

Web3
Security
Roadmap
by Mono Audit

ver. 1.0

https://monoaudit.com/en/
https://monoaudit.com/en/web3-sec-roadmap/

Web3 Security
Roadmap

The Web3 Protocol Security Roadmap is a strategic document that helps
project teams plan and execute security-related tasks throughout the
protocol lifecycle.

It functions both as a practical guide for internal use and as a
communication tool to inform the community of the team's security efforts.

The Roadmap evolves with the product and reflects both planned and
completed activities aimed at improving the security of the protocol.

1

Lifecycle Stages

The Roadmap covers all stages of the protocol's life, from ideation to
post-launch maintenance.

It divides security-related activities into four stages: Planning,
Development, Pre-deployment, and Post-deployment.

The Planning stage begins when the founders commit to launching the
protocol. This is where the foundational work begins, even if coding has not
yet begun.

The Development stage begins when engineers begin writing code, and
can continue in cycles throughout the protocol's lifespan, especially with
frequent updates and iterations.

The Pre-deployment stage occurs when the dev phase is complete but
before launch. This is a risky period: teams are often under pressure to
launch, but rushing it can have disastrous consequences. This stage
should focus on verifying security readiness and addressing any critical
issues.

The Post-deployment stage includes ongoing operations such as
monitoring, updates and migrations, maintaining the long-term stability of
the protocol.

2

Optionality in
Roadmap Items

The roadmap uses three levels of importance.

Mandatory actions are non-negotiable for any security-focused protocol.

Nice-to-have actions may not apply in every case, but should be
considered necessary when appropriate.

Optional actions may be skipped by team depending on context, although
their implementation can add another layer of protection.

3

Roadmap
Publication

Making the Web3 Security Roadmap public allows the team to build trust
with users by clearly communicating their security strategy.

Early versions of The Roadmap will describe intent only. As development
progresses, the points in the security plan will evolve from declarations to
statements of fact.

As the protocol evolves, The Roadmap should be maintained as a living
document with version control and a history of changes, allowing users and
participants to easily track progress and understand the security posture of
the protocol.

4

5

Planning

Protocol Logic

Documentation
It is important to document the core logic of the protocol early in the
planning phase.

Whether in the form of a whitepaper or interactive documentation, this
helps team members align on implementation goals, serves as a key
reference for auditors, and gives users a clear overview of the protocol's
intended functionality.

This documentation should be publicly available and kept up to date.

Threat Modeling
Threat modeling should begin after the protocol architecture has been
defined, but before coding begins.

This involves analyzing the flow of values and data through the protocol,
mapping its dependencies, and identifying potential attack vectors.

The resulting document should describe the risks, their potential impacts,
and mitigation strategies.

If the threat model reveals critical flaws, the protocol logic should be
revised.

Publishing this information demonstrates the team's commitment to
proactive security.

6

Development

Smart Contracts

Established Framework
Once development begins, choosing a modern, widely adopted smart
contract framework becomes important.

This decision simplifies internal workflows and makes it easier for the
community, auditors, and contributors to interact with the codebase.

Such frameworks typically offer robust ecosystems with tools, linters, and
plugin integrations.

Automated tests
Testing is a fundamental requirement during the development phase.

Writing unit tests, integration tests, and where applicable fuzz tests ensures
that the codebase is working reliably.

A well-integrated CI pipeline should automatically run these tests after each
change, preventing broken code from being merged.

Transparency about test coverage and results increases trust with users
and external stakeholders.

7

Best practices
Following established best practices in smart contract development and
security helps teams avoid common pitfalls.

By incorporating these practices into development through frameworks and
CI automation, teams lay a solid foundation for secure protocols.

Developers Documentation
Maintaining up-to-date developer documentation supports both internal
knowledge transfer and external collaboration.

As team members come and go, documentation ensures continuity.

For external auditors, contributors, and researchers, good documentation
reduces the learning curve and helps them engage more effectively with
the code.

Incremental Security Audit
Traditional audits provide a snapshot of security at a specific point in time,
but incremental audits follow the development process continuously.

These audits start with the first code commit and track vulnerabilities as the
code evolves.

Each time new code is added, the auditor focuses only on the latest
changes.

This approach shortens the feedback loop, helps developers fix issues
faster, and reduces the workload of security reviewers.

8

Backend & Frontend

Hot wallet keys management
Security is not limited to smart contracts.

Any internal or external systems require careful handling, especially when
dealing with hot wallet keys or administrative privileges.

Key leaks remain the leading cause of protocol breaches, so teams should
rely on proven secret management solutions.

CI pipelines for Security
In addition to basic CI pipelines for testing, integrating tools that scan for
vulnerabilities in dependencies can protect against supply chain attacks.

These tools help identify outdated or vulnerable packages during the build
process and can be automated as part of CI/CD workflows.

Team

Team verification
The human factor must be taken into account.

Insider threats are real, especially in high-value protocols.

Teams should use auditing tools and role-based restrictions to minimize
risk.

A team verification service will help identify suspicious individuals or restrict
their actions.

Publicly disclosing team members and contributors can also build user
trust.

9

Pre-deployment

Source code

Open source & Smart contracts verification
As the product nears launch, it's essential to make the source code open
and verify smart contracts on-chain.

In Web3, closed source is more of a red flag than a security measure.

Attackers can still analyze the bytecode, while transparency encourages
the community to contribute to security.

Pre-audit checklist
A pre-audit is a lightweight process designed to identify issues before a
formal audit.

It identifies missing documentation, failed tests, and broken contracts early,
saving time and money during the full audit phase.

Security audit
A full audit remains the cornerstone of Web3 security.

While it does not guarantee absolute security, a professional review
significantly reduces the risk of serious flaws.

10

Explicit disclosure of unfixed vulnerabilities
Following an audit, any decision not to patch identified vulnerabilities
should be explained publicly, including the rationale and any risk
implications.

Economic Model Audit
As protocols become more complex, it becomes increasingly difficult to
reason about economic logic.

Logic-focused audits are becoming increasingly important, especially to
detect errors in interconnected systems or tokenomics.

These audits address issues that basic smart contract audits may miss.

Formal Verification
Formal verification, although resource-intensive, can provide mathematical
certainty around critical parts of a protocol's logic.

It reduces human error and cognitive bias, making it a powerful tool when
applied selectively to the most sensitive components.

11

Documentation

User documentation
User documentation doesn't just help end users.

For developers and auditors, this level of documentation fills the gap
between technical implementation and actual functionality.

It supports the creation of accurate mental models, especially when the
code is abstract or low-level.

Explicit disclosure of trust assumptions
Clearly stating the trust assumptions underlying your protocol is another
sign of maturity.

From reliance on third-party contracts to multi-signatures and admin
permissions, users need to know what is outside your direct control.

This includes internal infrastructure, wallets, or off-chain systems involved
in the user journey.

Explicit disclosure of Security Roadmap and its status
Publishing the security roadmap itself, along with its status, ensures that
users can verify the project's intent and track progress.

It should be presented clearly and include links to audits, dashboards, and
other security-related materials.

12

Testnet

Full deploy
Deploying a full protocol version to a testnet provides an opportunity to
rehearse deployments and test features in a safe environment.

It should use the same interfaces as the mainnet to simulate the real user
experience.

Test: on-chain integrations; kill switch
Integration testing and incident response exercises can also be performed
here.

Incentivized testnet real user stress-test
Testnets can also support marketing and feedback collection.

By incentivizing users to participate in testnet usage, teams can identify
usability and performance issues under realistic load conditions while
building community engagement.

13

Incident preparation

Incident response plan
Even if your protocol seems airtight, having an incident response plan is
essential.

This plan should detail roles, communication processes, emergency
shutdown procedures, coordination with legal and security experts, and
other critical response tasks.

It should be reviewed regularly and used in practical exercises.

Blue team agreements
Partnering with an external security team for incident response ahead of
time can save precious minutes when an attack happens.

Publicly disclosing this partnership shows that you take security seriously.

Loss insurance
Integration with decentralized insurance protocols can provide users with
the ability to protect their funds.

These services allow users to share risk and create an additional safety
net, which reflects positively on your project's commitment to user security.

14

Post-deployment

Operations

On-chain monitoring
Continuous monitoring of on-chain activity becomes a frontline defense.

Sudden anomalies should trigger alerts so your team can quickly respond
and prevent damage.

A timely identified attack attempt can be stopped by activating an
emergency protocol.

Bug bounty
Launching a public bug bounty program invites ethical hackers to test your
protocol.

With clearly defined reporting channels and meaningful rewards, these
programs attract attention and encourage disclosure instead of exploitation.

15

Migrations

Testnet migration exercise
Testnets also play a role after launch.

Testing migration scenarios and new deployments on testnets can prevent
real bugs from happening in the first place.

It also reduces the pressure on developers during important updates.

Up-to-date documentation
Maintaining up-to-date technical and user documentation is part of
responsible operations.

Any changes in logic, dependencies, or deployment process should be
documented.

Incremental security audit
Every protocol update should go through an incremental security review.

Continuous auditing allows teams to respond to changes effectively without
starting from scratch.

Threat Modeling Review
Major updates should trigger a new review of the protocol's threat model.

Even small changes in integration or dependencies can introduce new
risks.

Updated models should be published for transparency.

16

Frontend and backend proper versioning
Applying sensible versioning practices for both frontend and backend code
makes it easier to identify issues and revert to stable versions during
incidents.

This approach can reduce confusion for users and prevent reputational
damage during unexpected outages.

17

	Protocol Logic
	Documentation
	Threat Modeling

	Smart Contracts
	Established Framework
	Automated tests
	Best practices
	Developers Documentation
	Incremental Security Audit

	Backend & Frontend
	Hot wallet keys management
	CI pipelines for Security

	Team
	Team verification

	Source code
	Open source & Smart contracts verification
	Pre-audit checklist
	Security audit
	Explicit disclosure of unfixed vulnerabilities
	Economic Model Audit
	Formal Verification

	Documentation
	User documentation
	Explicit disclosure of trust assumptions
	Explicit disclosure of Security Roadmap and its status

	Testnet
	Full deploy
	Test: on-chain integrations; kill switch
	Incentivized testnet real user stress-test

	Incident preparation
	Incident response plan
	Blue team agreements
	Loss insurance

	Operations
	On-chain monitoring
	Bug bounty

	Migrations
	Testnet migration exercise
	Up-to-date documentation
	Incremental security audit
	Threat Modeling Review
	Frontend and backend proper versioning

